7 research outputs found

    Unified Synchronized Data Acquisition Networks

    Full text link
    The permanently evolving technical area of communication technology and the presence of more and more precise sensors and detectors, enable options and solutions to challenges in science and industry. In high-energy physics, for example, it becomes possible with accurate measurements to observe particles almost at the speed of light in small-sized dimensions. Thereby, the enormous amounts of gathered data require modern high performance communication networks. Potential and efficient implementation of future readout chains will depend on new concepts and mechanisms. The main goals of this dissertation are to create new efficient synchronization mechanisms and to evolve readout systems for optimization of future sensor and detector systems. This happens in the context of the Compressed Baryonic Matter experiment, which is a part of the Facility for Antiproton and Ion Research, an international accelerator facility. It extends an accelerator complex in Darmstadt at the GSI Helmholtzzentrum für Schwerionenforschung GmbH. Initially, the challenges are specified and an analysis of the state of the art is presented. The resulting constraints and requirements influenced the design and development described within this dissertation. Subsequently, the different design and implementation tasks are discussed. Starting with the basic detector read system requirements and the definition of an efficient communication protocol. This protocol delivers all features needed for building of compact and efficient readout systems. Therefore, it is advantageous to use a single unified connection for processing all communication traffic. This means not only data, control, and synchronization messages, but also clock distribution is handled. Furthermore, all links in this system have a deterministic latency. The deterministic behavior enables establishing a synchronous network. Emerging problems were solved and the concept was successfully implemented and tested during several test beam times. In addition, the implementation and integration of this communication methodology into different network devices is described. Therefore, a generic modular approach was created. This enhances ASIC development by supporting them with proven hardware IPs, reducing design time, and risk of failure. Furthermore, this approach delivers flexibility concerning data rate and structure for the network system. Additionally, the design and prototyping for a data aggregation and concentrator ASIC is described. In conjunction with a dense electrical to optical conversion, this ASIC enables communication with flexible readout structures for the experiment and delivers the planned capacities and bandwidth. In the last part of the work, analysis and transfer of the created innovative synchronization mechanism into the area of high performance computing is discussed. Finally, a conclusion of all reached results and an outlook of possible future activities and research tasks within the Compressed Baryonic Matter experiment are presented

    Literaturverzeichnis

    No full text

    V. Anhang

    No full text

    Literaturverzeichnis

    No full text

    9. Anhang

    No full text

    QUELLEN- UND LITERATURVERZEICHNIS

    No full text

    Literaturverzeichnis

    No full text
    corecore